Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Top Med Chem ; 19(22): 2049-2057, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31364515

RESUMO

BACKGROUND: Scorpion venom causes renal injury and affects vascular ion-channels function. Centruroides margaritatus scorpion is found in Colombia and is frequently the cause of envenomation accidents; however, its renal impact has never been investigated. OBJECTIVE: To evaluate the effects of C. margaritatus venom (CmV) on renal parameters using isolated rat kidney and renal cell culture models. METHODS: Wistar rats (n = 5, weighing 240-300 g) were first perfused with Krebs-Henseleit solution containing 6 g 100 mL-1 bovine serum albumin. After 30 minutes, the kidneys were perfused with CmV to a final concentration of 10 µgmL-1; evaluation was performed by measuring Perfusion Pressure (PP), Renal Vascular Resistance (RVR), Urinary Flow (UF), Glomerular Filtration Rate (GFR), and percentage of electrolyte tubular transport. Moreover, kidney histological analyses and cell cytotoxicity in renal tubule epithelial cells (MDCK) and proximal tubular cells (LLC-MK2) were assessed. RESULTS: CmV increased PP and RVR 60 min after perfusion. On the other hand, UF, GFR, and the percentages of sodium, potassium and chloride tubular transport decreased after experimental envenomation. UF dropped after 120 min, while GFR and percentage of electrolyte tubular transport diminished after 60, 90 and 120 min. CmV was not toxic to MDCK cell line but reduced the viability of LLC-MK2 cells at concentrations ranging from 6.25 to 200 µgmL-1. Histological analyses disclosed hydropic degeneration, edema, and protein deposits. Flow cytometry disclosed that cell death occurred predominantly by necrosis. CONCLUSION: Our results suggest that C. margaritatus venom can trigger renal impairment, mainly in the proximal kidney tubule.


Assuntos
Rim/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colômbia , Cães , Relação Dose-Resposta a Droga , Rim/patologia , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/patologia , Masculino , Ratos , Ratos Wistar , Escorpiões , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 28(14): 2408-2412, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934246

RESUMO

We describe a medicinal chemistry approach to the discovery of a novel EP1 antagonist exhibiting high potency and good pharmacokinetics. Our starting point is 1, an EP1 receptor antagonist that exhibits pharmacological efficacy in cystometry models following intravenous administration. Despite its good potency in vitro, the high lipophilicity of 1 is a concern in long-term in vivo studies. Further medicinal chemistry efforts identified 4 as an improved lead compound with good in vitro ADME profile applicable to long term in vivo studies. A rat fracture study was conducted with 4 for 4 weeks to validate its utility in bone fracture healing. The results suggest that this EP1 receptor antagonist stimulates callus formation and thus 4 has potential for enhancing fracture healing.


Assuntos
Descoberta de Drogas , Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Fraturas Ósseas/metabolismo , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/patologia , Camundongos , Camundongos Knockout , Estrutura Molecular , Receptores de Prostaglandina E Subtipo EP1/deficiência , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Relação Estrutura-Atividade , Tiazóis/química
3.
Front Immunol ; 9: 865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740451

RESUMO

Influenza virus infection is a significant global health threat. Because of the lack of cross-protective universal vaccines, short time window during which antivirals are effective and drug resistance, new therapeutic anti-influenza strategies are required. Broadly, cross-protective antibodies that target conserved sites in the hemagglutinin (HA) stem region have been proposed as therapeutic agents. FI6 is the first proven such monoclonal antibody to bind to H1-H16 and is protective in mice and ferrets. Multiple studies have shown that Fc-dependent mechanisms are essential for FI6 in vivo efficacy. Here, we show that therapeutic administration of FI6 either intravenously or by aerosol to pigs did not reduce viral load in nasal swabs or broncho-alveolar lavage, but aerosol delivery of FI6 reduced gross pathology significantly. We demonstrate that pig Fc receptors do not bind human IgG1 and that FI6 did not mediate antibody-dependent cytotoxicity (ADCC) with pig PBMC, confirming that ADCC is an important mechanism of protection by anti-stem antibodies in vivo. Enhanced respiratory disease, which has been associated with pigs with cross-reactive non-neutralizing anti-HA antibodies, did not occur after FI6 administration. Our results also show that in vitro neutralizing antibody responses are not a robust correlate of protection for the control of influenza infection and pathology in a natural host model.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/uso terapêutico , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteção Cruzada/imunologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Cães , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino/patologia , Receptores Fc/imunologia , Especificidade da Espécie , Sus scrofa
4.
J Nutr Health Aging ; 20(5): 486-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27102784

RESUMO

Catecholamines regulate a variety of cellular functions in the mammalian kidney. The present study was aimed to investigate the differential sensitivity of Madin-Darby Kidney Cells (MDCK cells) to epinephrine in a dose-dependent manner. The loss of adhesion and altered cell shape were observed in MDCK cells. The presence of apoptosis and necrosis were studied by the fluorescence microscope and Confocal Laser Scanning Microscope (CLSM). Scanning Electron Microscope (SEM) analysis showed several surface microvilli, and cells were rounded having ruffled and crenated surface. Agarose gel electrophoresis study showed the presence of smearing, which further confirms the occurrence of necrosis. The fluorescence staining study showed the increased reactive oxygen species (ROS) level. Up-regulation of p53, bax, and caspase 3 mRNA expressions was evidenced by quantitative PCR (qPCR). Caspase 3 activity was also increased in epinephrine treated cells. Our experimental results do not imply that the epinephrine should not be used in the clinical treatments. However, our results add a research note of caution on the possible cytotoxic effect of maximal doses of epinephrine over a prolonged time.


Assuntos
Epinefrina/metabolismo , Rim/metabolismo , Animais , Cães , Rim/efeitos dos fármacos , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/patologia
5.
Physiol Genomics ; 47(2): 24-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492927

RESUMO

Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused ß-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/ß-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.


Assuntos
Caderinas/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas ADAM/antagonistas & inibidores , Animais , Dipeptídeos/farmacologia , Cães , Células Epiteliais/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Deleção de Genes , Humanos , Ácidos Hidroxâmicos/farmacologia , Rim/citologia , Rim/metabolismo , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/patologia , Camundongos Knockout , Camundongos Transgênicos , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA